By Kardi Teknomo, PhD .

< | Previous | Next | Contents >

Lehmer mean

Lehmer mean is another type of Generalized mean, somewhat similar to Minkowski mean , a generalization of arithmetic , geometric and harmonic mean but with different parameter value

For two numbers Lehmer Mean and Lehmer Mean the Lehmer mean is defined as

Lehmer Mean

Example:

Setting Lehmer Mean , we have arithmetic mean Lehmer Mean

Example:

When Lehmer Mean (take a limit to approach zero), we have harmonic mean Lehmer Mean

Example:

When Lehmer Mean , and only for two input numbers, we have geometric mean Lehmer Mean

Note:

  • However, we do not have a specific p in Lehmer mean to represent Quadratic mean



Experiment with the interactive program below to compute Lehmer mean of a list of numbers separated by comma. Try different input values and parameter p and compare the result with other Means.

Input list of numbers separated by comma, then press the button "Get Lehmer Mean". The program will compute directly when you change the input data or parameter.


Parameter p = or

Table below provides the summary of parameter to relate Lehmer generalized mean and other means.

Name

Parameter p

Arithmetic Mean

Lehmer Mean

Geometric mean

Lehmer Mean (only two inputs)

Harmonic mean

Lehmer Mean (limit)

< Previous | Next | Contents >

See also: Minkowski mean , generalized mean , arithmetic mean , harmonic mean , geometric mean
Rate this tutorial or give your comments about this tutorial

This tutorial is copyrighted .

Preferable reference for this tutorial is

Teknomo, Kardi (2015) Mean and Average. https:\\people.revoledu.com\kardi\tutorial\BasicMath\Average\